¿La inteligencia artificial podría acelerar el desarrollo de nuevos tratamientos médicos?
- 09/05/2023 11:32 hs
COMPARTIR EN:
En los Estados Unidos, están desarrollando modelos lingüísticos similares a los de la plataforma ChatGPT para mejorar terapias con anticuerpos y crear nuevos. Ya dieron sus primeros pasos contra patógenos como el coronavirus y el ébola.
La pandemia por el coronavirus desató una carrera por el desarrollo de tratamientos seguros y eficaces contra la enfermedad COVID-19. Muchas de las intervenciones que se evaluaron en ensayos clínicos se basaron en moléculas de anticuerpos que fueron aisladas de la sangre de personas que se habían recuperado de la enfermedad.
En cambio, ahora grupos de científicos trabajan en hacer que la inteligencia artificial generativa aporte un atajo para eludir parte de ese laborioso proceso. Esa tecnología puede sugerir cuáles son secuencias que aumentan la potencia de los anticuerpos contra virus como el coronavirus SARS-CoV-2 y el virus del ébola.
Uno de los estudios fue realizado en los Estados Unidos y publicado en la revista Nature Biotechnology. Forma parte de un intento de las “redes neuronales” que están detrás de la plataforma de inteligencia artificial ChatGPT al diseño de anticuerpos.
Hoy, ya los tratamientos en base a anticuerpos contra enfermedades como el cáncer de mama o la artritis reumatoide generan más de 100.000 millones de dólares en ventas mundiales cada año.
Para diseñar tratamientos con anticuerpos, científicos en los Estados Unidos hicieron un intento de aplicar “redes neuronales” similares a las que están detrás de la plataforma de inteligencia artificial ChatGPT/ REUTERS/Dado Ruvic/
Los investigadores esperan que las redes neuronales capaces de crear textos, imágenes y otros contenidos a partir de patrones aprendidos aceleren el desarrollo y ayude a descubrir anticuerpos para blancos terapéuticos que se han resistido a los métodos de diseño convencionales.
“Existe un gran interés por descubrir y diseñar anticuerpos, y por saber cómo mejorarlos”, dijo Peter Kim, bioquímico de la Universidad de Stanford, California, coautor del artículo publicado en Nature Biotechnology.
Los anticuerpos son una de las principales herramientas del sistema inmunitario contra las infecciones. Estas proteínas se han convertido en las preferidas de la industria biotecnológica, en parte porque pueden diseñarse para unirse a casi cualquier proteína imaginable y manipular su actividad.
Pero generar anticuerpos con propiedades útiles y mejorarlas implica “mucho tamizaje de fuerza bruta”, explicó Brian Hie, biólogo computacional de Stanford que también codirigió el estudio.
Los anticuerpos son proteínas producidas por el sistema inmunitario del cuerpo cuando detecta sustancias dañinas. En 1972, César Milstein y Georges Köhler -que más tarde ganaron el Premio Nobel- descubrieron cómo producir cantidades ilimitadas de anticuerpos idénticos (Getty Images)
Para ver si las herramientas de inteligencia artificial generativa podían eliminar parte del trabajo pesado, Hie, Kim y sus colegas utilizaron redes neuronales llamadas modelos del lenguaje de las proteínas. Son similares a los “grandes modelos lingüísticos” en los que se basan herramientas como ChatGPT.
Otros investigadores han utilizado estos modelos para diseñar proteínas completamente nuevas y predecir su estructura con gran precisión. El equipo de Hie utilizó un modelo de lenguaje proteínico -desarrollado por investigadores de Meta AI, parte del gigante tecnológico Meta, con sede en Nueva York- para sugerir un pequeño número de mutaciones de anticuerpos.
Los investigadores aclararon que evaluaron un anticuerpo que no es eficaz contra la variante del coronavirus Ómicron y sus subvariantes, y es improbable que los cambios guiados por la inteligencia artificial restablezcan su eficacia.
“Se trata de una herramienta que la gente utilizará para mejorar sus anticuerpos”, enfatizó Charlotte Deane, investigadora en inmunoinformática de la Universidad de Oxford, en el Reino Unido. “Creo que es realmente genial”, pero añade que muchos investigadores esperan que, en lugar de limitarse a mejorar los anticuerpos existentes, la inteligencia artificial generativa sea capaz de crear otros totalmente nuevos que se unan a un blanco dirigido.
Esta capacidad podría ayudar a los investigadores a desarrollar fármacos para blancos moleculares que se han resistido a otros enfoques de diseño de anticuerpos, según sostuvo Surge Biswas, cofundador de Nabla Bio, una empresa de Boston, Massachusetts, Estados Unidos, que trabaja en este reto.